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Abstract

Second order transfer matrices for inhomogeneous field Wien
filters  including spin-precession. Inhomogeneous. field Wien fil-
ters offer an alternative to the conventional uniform field Wien
filter, magnetic sector or electrostatic deflector for €lectron-spin
rotation. Their main advantage is the point-to-point stigmatic
focusing property which preserves the cylindrical symmetry in a
beam transport system. Both uniform and inhomogeneous field
Wien filters may be used for spin rotation and/or energy/mass
analysis: The complete transfer matrix of a general inhomoge-
neous field Wien filter is derived in a second order approxima-
tion. The matrix elements for the precession of the electron
spin-polarization vector are iricluded in a separate spin-rotation
matrix. Real éntrance and exit fringing fields are included for the
specialized case of a Wien filter with curved and normal (not
inclined) entrance and exit pole faces. The transfer matrices are
parameterized in terms of beam. parameters and the miltipole
expansion coefficients of the filter’s electric and magnetic fields.

Inhalt

Transfermatrizen 2. Ordoung von Wien-Filtern fiir inhomogene
Felder und Spin-Prizession. Wien-Filter fiir inhomogene Felder
sind eine Alternative zu den konventionellen Wien-Filtern fiir
homogene Felder, magnetischer Sektor oder elektrostatische
Ablenksysteme fiir Elektronenspin-Rotation. Thr wichtigster
Vorteil ist die stigmatische Punkt-zu-Punkt Fokusiereigen-
schaft, die die Zylindersymmetrie im Strahltransportsystem
bewahrt. Wien-Filter fiir uniforme wie fir inhomogene Fel-
der koénnen zur Analyse der Spin-Rotation und/oder der
Energie/Masse verwendet werden. Die vollstindige Transfer-
matrize eines Wien-Filters fir inhomogene Felder wird in ei-
ner Niherung zweiter Ordnung abgeleitet. Die Matrizenele-
mente fiir die Prazession des Elektronen-Spin-Polarisationsvek-
tors sind in einer separaten Spin-Rotations-Matrize enthalten.
Reelle Eingangs- und Ausgangsfelder sind. fiir den speziellen
Fall eines Wien-Filters mit gekrimmten und normalen (nicht
gekippten) Fingangs- und Ausgangspolebenen mitberiicksich-
tigt. Die Transfermatrizen sind parametrisiert in Termen der
Strahlparameter und der Koeffizienten der Multipolerweiterung
der elektrischen und magnetischen Felder des Filters.

1. Introduction

The velocity filter formed from crossed electric and mag-
netic fields has become known as the Wien filter [1]. The
Wien filter has been used as an electron energy loss spec-
trometer and monochromator [2, 3, 4, 5, 6], mass filter
and ion separator [7, 8, 9, 10], and an electron-spin rota-
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tor [11, 12, 13]. The original theory was developed largely
for the homogeneous field Wien filter [14, 15, 16, 17, 18,
19, 20] which suffers from the limitation that it focuses
only in one direction, thus forming a line image at the
image plane. The main advantage of inhomogeneous field
Wien filters used as both analyzers and spin rotators are
their ability to perform point-to-point focusing [21, 22,
23, 24, 25, 26, 27].

In addition to the double focusing property of inhomo-
geneous field Wien filters, these devices have another
salient feature which we would like to exploit. Wien filters
utilize an electric field whose strength is adjusted to keep
the charged particle trajectories in a straight line while
passing through the magnetic field. Thus, the central axis
trajectory throug the Wien filter is a straight line. It will
be shown that the zeroeth order trajectory displacement
and first order tilt due to the entrance and exit fringe
fields can be eliminated. This is attractive from the stand-
point of alignment and interfacing the Wien filter with
auxilliary optics.

The Wien filter can be operated in several modes. If the
incident energy of the beam is large, the Wien filter may
be operated as an electron-spin rotator or an electron
spectrometer/mass filter with small dispersion. When the
Wien filter is operated with low incident energies, utiliz-
ing a pre-retardation lens [4, 6, 27], much higher disper-
sion can be achieved. High resolution electron energy loss
spectroscopy or high resolution mass analysis' usually
exploits the high performance of the Wien filter with
pre-retardation. For all applications, it is desirable to
have high transmission through the device. It is this re-
quirement which constrains us to.consider higher order
aberrations.

In this report, the complete second order transfer ma-
trices for inhomogeneous field Wien filters are derived,
including the matrix which governs the precession of the
electron-spin. The effects of the fringing fields at the en-
trance and exit of the filter are included. The transfer
matrices for the spatial trajectories are derived using the
trajectory method and expanding the electric and mag-
netic fields into multipole components. The real fields can
be formed by suitably placed (multipole) coils and elec-
trodes [26, 27], cylindrical condensers and tilted/curved
magnetic pole pieces [5, 22, 23, 27] or in toroidal fields
using imbedded electrodes [24, 25]. Once the second or-
der trajectories through the Wien filter are known, the
coupled differential equations governing the electron-
spin precession in inhomogeneous fields can be solved
using the trajectory method.
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2. Multipole field expansions

We begin the analysis of the trajectories in an inhomoge-
neous field Wien filter by expressing the potentials and
fields in terms of multipole expansions. The geometry
used for the derivation of the Wien filter transfer matrices
has the dominant dipole fields oriented in the x — y
plane. The primary electron ray trajectory is directed in
the positive z-direction and lies on the z-axis, passing
through (0,0) in the x — y plane. In fig. 1, two of several
possible variations are given for realizing the fields in an
inhomogeneous field Wien filter. In one case, fig. 1a, the
inhomogeneous ficlds are excited by curved electrodes
and tilted magnetic pole pieces, whereas in a second op-
tion, fig. 1b, the fields are excited by suitably superim-
posed excitations (U; and I, are the potentials and amp-
turn flux linkages for each individual pole. Specific
excitations [29, 30] are required to excite the particular
multipole fields which may be superimposed on one an-
other.) of the electric/magnetic octupole. The dipole fields
in fig. 1a and 1b are oriented such that in the midplane

Edipole = )eEl Bdipole = ﬁBl (1)

The subscript “1” refers to the dipole component of the
field and the coefficients E, and B, are real and positive
parameters that depend only on z. Throughout this paper
we will refer to the charged particle as an electron. Al-
though the extension to general charged particles is im-
plied, the negative electronic charge of the electron has
been incorporated into the equations. With this dipole
field orientation, the electrical force on an electron is in
the negative x-direction while the magnetic force is in the
positive x-direction. The x-direction is the dispersion di-
rection. The balancing condition, or the zeroeth order
Wien filter focusing condition, where the magnetic and
electrical forces are equal occurs when

evB;=eE; or |/24¢,B,=E;,. 2
n = — e/m is the charge to mass ratio and ¢, is the initial

electron (electric) potential set such that the initial kinetic
energy K, is given by e ¢,.

We wish to express the components of the fields in
terms of two dimensional multipole field expansions
greatly simplifying the ensuing analysis. The fields are
defined as the negative gradient of the electric and mag-
netic scalar potentials ¢» and y for each multipole compo-
nent [28]. The polar angle a is measured from the positive
x-axis in the usual way. Superscripts in parentheses de-
note differentiation with respect to z

E=-V$=-V 3 ¢,
n=0

B © o (—1)P(— E)ZP 2Pt co5(na)
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Fig. 1. (a) Tilted magnetic poles and curved electrodes used for
the realization of the multipole fields in an inhomogeneous ficld
Wien filter. The dipole fields are oriented in the x — y plane and
the electron trajectory is in the positive z direction. (b) An octu-
pole system for realizing the Wien filter fields.
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Primes will be used exclusively to denote differentiation
with respect to z where z is the distance along the optic
axis (central or primary ray) as defined in fig. 1. Explicit
expressions for the electric and magnetlc multipole po-
tential expansions are given below in a third order ap-
proximation [26]. The numerical subscript defines the
multipole field order.
Dipole Components:

1
¢1=¢0—[E1-§E'{(x2+y2)]x+~~, (5)

w1=—1[31—13';(x2+y2)]y+---. ©)
Ho 8

Quadrupole Components:
1
¢y = *[Ez—~E'£(X +y )}(xz— Y+, ()

2 1
V2 = ——[Bz—~B;(x2+ yﬂxw @
I 12

Hexapole Components:

¢3=— E3(x> = 3xy?) + -, ©

1
¢3=—;B3(3x2y—-y3)+---. (10)

We want to express the potentials and the fields as a
function of the multipole expansion coefficients in com-
plex notation such that the transverse coordinates x and
y can be included in a single differential equation. To do
this, we define the following standard coordinate trans-
formation: @ = x + iy, ® = x — iy and z = z. The fields
can also be expressed in complex form. In our conven-
tion, E, = E, + iE,and B, = B, + i B, and the fields are
derlved from the scalar potentlals as

¢ d¢
= — —_— E = — —
26" i oz’
0 0
Bw:_zluo_l/f’ Bzz_l‘to—l//' (11)
li0) 0z

When the potentials and fields are expressed in terms of
the complex transverse coordinates o and @ and the
multipole field coefficients, and terms of third order in the
potentials and second order in the fields are retained, the
following general expressions for the excitation of the
Wien filter potentials and fields results

¢ =, — 1 [Ey(@ + @) + E,(0* + &*) + E5(0® + &)
~ 3 El(@’@ + 0d?)], (12)
Y= 2; [B, (@ — @) + By(@? — @) + By(® — &)

* — 3Bl (0?0 — 0d?)], (13)
E,=E;+2E,d+ 3E;0* — § E{(0* + 20d), (14)
E, = [Ei(0 + @) + Ey(@? + @], (15)

B,=i[B,+2B,& + 3B, + 1 Bl(0* — 2w@)], (16)

B,=— %[B’l(w — @) + By(@* — &)]. (17)

3. Second order trajectory equation

The complex all orders trajectory equation for transverse
motion of an electron with coordinates (w, ), parameter-
ized in z, is derived from the Lorentz force equation [26]

d ]/-cu’
El:m]= l/|/1+wco-1—ll/[wB — B,

(18)

To develop a second order theory, we must expand all
terms in the differential equation containing w and & to
second order.

As before (eq. 2) we set ¢, = K, /e and incorporate the
initial energy spread of the beam with ¢,=> ¢, (1 + )
where J is AK/K,. This term will give rise to dispersion,
a characteristic parameter for energy loss spectrometers.
The expansmns for the potential, electric and magnetic
fields given in equations (12—17) must be inserted into the
trajectory equation (18) to form the complete second or-
der inhomogeneous Wien filter trajectory equation. This
second order expanded differential equation is the start-
ing point for the present analysis and is given below.
(Note: This is a more precise version of the Wien filter
equation originally given as equation (9) in reference 26;
the earlier equation is missing second order terms and
does not handle terms due to energy variation rigorously)

.o E?
' +~ E, — /2n¢032+8¢
Efw E ¢
8¢>2—4¢ + F(w,2),
1
FZ(w,z)=—4¢o

E,E, 5E3 ne
. 27 E 2 1~2 L oB,,
{w [ 1] + w {——2@_ + 16¢3 3 1

S5E.E SE3
52 | 212 i
e [ 26, 1642

— 61/21, By — El LYo ¢,,Bz_]
+ 0d [gzz E1 ]/2;1 $, B, }

5E?
+wo[—2E]+ wd [— 4—(/)1}

+(I)5|:2 2n¢,B, 4E2—%}+62[%]}.
(19)

+ 6E,

2E,E,
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4. Solutions to the trajectory equation

In order to form a stigmatic focusing system, the first
order trajectory equation (equation (19) with F, = 0 and
0 = 0) must be identical for both x and y coordinates.
This condition is the first order Wien filter focusing con-
dition. Mathematically, this criterion is satisfied when the
following equation is met

. E?
E,—)/2n¢,B, + ﬁ =0. (20)

For the stigmatic focusing system, ignoring aberrations
(F, = 0), the equation governing the motion of the elec-
trons in the fields is simply

w”+~—w—E—5 or w”+}1B% _ Lo
847 44, 4¢, 49,
where the balancing condition has been used. We will
choose solutions to this simplified equation (21) of the
following form
w=w,d(z) + o, h(z) + 5d(z). (22)
The subscripted variables represent the initial condi-
tions. The two functions, g(z) and h(z), are real. The d(z)
term, also real, represents the dispersion and results from
the first order term on the right hand side of equation
(21). Traditionally, the solutions g(z) and h(z) are given
for the following initial conditions, where z, defines the
starting position (outside of the Wien filter fields) along
the optic axis

g(z,) =H(z,) =1,

21

9'(z,) = h(z,) = d(z,) = d'(z,) = 0.
(23)
We can rewrite the paraxial equation of motion for an
electron of fixed energy (5 = 0) as w” + k*w = 0 where
k*=nB%/A¢,= E?/8¢2 = 1/2R?. R, is the cyclotron ra-
dius for the case where the fields are uniform along the
length of the Wien filter and constitutes the basic unit of
length for the ensuing analysis. Substituting the initial
conditions for the general first order trajectory solutions
given above, the expressions for the ray-trajectory solu-
tions become (in the SCOFF or Sharp Cut Off Fringing
Field approximation where B and E are independent of
z throughout the entire effective length of the Wien filter)
g(z) = cos(kz), h(z) = %sin (kz). (24)
The structure of the aberration coefficients and the
dispersion term can be generated from a Taylor series
expansion. The aberration coefficients, or second order
matrix elements must be calculated by taking the inte-
grals of the appropriate forcing functions [31]. The gener-
al expansions for the ray equation solutions for a system
with dipole symmetry to second order have the following

form

x =X (x| x4y xk y,t 6™ xf yi xF )t om
= (x]x,) %, + (x| x5) X, + (x]0) 6 + (x| x7) x7
+ (x| y2) y2 + x| %2 + (x| y,) ¥,2
+ (1 x,%5) X, %5 + (x| Yo ¥5) Yo Vo + (X[ X,0) X,0
+ (x| x,8) x,6 + (x]6%) 82, (25)

Y =Xyl xg v %, v, 6™ xk yh xik yytom
= (V1Y) Yo + (V1 V)) Vo + (31X, V) X0 Vs
+ (VXY X5y, + (V1X, ¥5) X, ¥,
+ (1% 56) X, v, + (¥1 950) ,6 + (] ¥,0) y,0.  (26)

The terms in parentheses are the matrix elements which
relate the initial conditions given by the ‘o’ subscripted
variables to the positions and slopes within the Wien
filter or at the exit plane. These matrix elements are what
we would like to determine. If g(z) and h(z) are the solu-
tions to the homogeneous differential equation, then each
term on the right hand side of equation (19) contributes
to the solution of the second order trajectory equation.
Assume that each term on the right hand side of equation
(19) can be denoted by an arbitrary function of the posi-
tions and slopes F(w,w’,z) = F. Bach of these functions
will be termed a forcing function and the matrix element
due to that particular forcing function of the second order
ray equation (for stigmatic imaging) is given by wg, [31]
where

wp = h(z)

Oty v

F(w,w',7) g(t)dt — g(2) jz' F(w,«',1) h(t)dz,
° @7

and where the upper limit of integration is a point z where
the electron position is to be evaluated within the Wien
filter, or z is the effective length of the Wien filter for
evaluation of the electron position at the exit of the filter.
Differentiation of this expression twice with respect to z
reveals that wy satisfies the differential equation for that
particular forcing function. When the forcing function F
is the term multiplying 4,

Fofi b _k_ (28)

we determine the first order dispersion function, d(z),

f

@) =3

(1 — cos(kz)). (29)

f= k/]/i will be used exclusively to designate the disper-
sion forcing function. It is noted that the mass dispersion
term is identical to the energy dispersion term in magni-
tude, but the sign will be changed.

5. Aberration forcing function coefficients and
matrix elements

In order to solve the trajectory equation for the inhomo-
geneous terms in equation (19), we substitute the first
order solutions into the equation and collect terms to
determine the forcing functions. The total forcing func-
tion is the result of this expansion and is given below in
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terms of the complex transverse coordinates
Fy(w,2) =} [Ag'? + Bg® + Egg' + @2[Cg*] + w,0,[Dg?]
+ w,2[AW'* + Bh* + EhK'] + @,*[Ch*]
+ w,w, [24g'" + 2Bgh + E(g'h + gh')]
+ w; @, [Dgh] + w,d,[Dgh] + &,@,{2Cgh)
+ w,®, [Dh*] + w,6[2Ag'd + 2Bgd + Dgd
+ E(gd' + g'd) + Fy]
+ @,8[2Cgd + Dgd + Gg]
+ @,0[2Chd + Dhd + Gh]
+ w,6[2ANd + 2Bhd + Dhd
+ E(hd’ + Wd) + Fh]
+ 6%[Ad'? + Bd* + Cd* + Dd* + Edd'

'+ Fd +Gd + H]. (30)
The forcing function coefficients are
E,
A==L
49,
1 [E,E 5E3
B - 1+~2 . r,_(éBl{ + 12
40, 24, 2 16¢;
1 [SE\E,
=—- 6E;—6]/2n¢,B
c 46, 24, + 6L, N, B
E, 5E3
2n¢,B
KT ]
1 2E E
D—-—4¢ 2 —]/2 ¢032+ J
Ey
F72,
_ SE}
B 164)3
|:2 /27’]¢oB2 W—'4E2j|
5E1
=— . 31
" 16¢, 1)

Now, we make the substitutions for the complex trans-
verse coordinates and find the forcing functions in terms
of the cartesian coordinates.

x-Forcing Functions:

F(x)=[(B+ C + D)¢* + Egg + Ag'*]

F(y;) = (D — B—C)¢g* — Egg' — Ag'?]

F(x,?) = [(B + C + D)h* + Ehl + AW'?]

F(y,") = [(D — B— C)h* — Ehi — AK'?]
Fy(x,x;) = [2(B + C + D)gh + E(gh’ + g'h) + 2Ag'K
Fy(y,y,) =[2(D — B — C)gh — E(gh’ + g'h) — 2Ag'K]

Fy(x,6) = [2(B + C + D)gd + E(gd' + ¢'d)
+24gd + (F + G)g)
F,(x,8) = [2(B + C + D)hd + E(hd' + W'd)

+24Kd + (F + G)H]
F,(0) =[(B+ C + D)d* + Edd' + (F + G)d + H].(32)

y-Forcing Functions:

Fy(X,y,) = [2(B — C)g* + 2Egg’ + 2A4'?]

Fy(x,y,) =[2(B— C)h* + 2EhK + 2 AW ?]

Fy(x,¥,) =[2(B — C)gh + E(gh' + g'h) + 2Ag'K]

Fy(x,y,) = [2(B — C)gh + E(gh’ + g'h) + 2Ag'H]

Fy(y,0) = [2(B — C — D)gd + E(gd' + g'd)

+ 24g'd' + (F - G)g]
[2(B— C — D)hd + E(hd' + K'd) ,
+ 2AKd +(F — G)h]. (33)
These equations are completely general in the sense that
the functions g(z), h(z) and d(z) are still arbitrary solu-
tions to the first order equations. If the variable k is
dependent on z as k(z), then the solutions will not be
given in terms of simple functions as given in equations
(24) and (29). However, given any other functional form
of the first order solutions, the above forcmg functions
remain valid. When the fields are uniform in the z direc-
tion, which is the case in & Wien filter with a large length
to gap ratio, then we can substitute the first order so-
lutions to the trajectory equatlon glven in (24) and (29)
into the above expressions. This is the SCOFF ap-
proximation. In this case we can simplify the expresswns
for the forcing functions by replacing the expressions
for ‘the -derivatives of - the first order solutions. as
g'(z) = — ksin(kz) = — k*h, MW(z) =cos(kz)=¢g and
d'(z) = f sin(kz)/k = fh. With these substitutions, the fi-
nal expressions for the complete second order forcing
functions for an inhomogeneous field Wien filter in the
SCOFF approximation are given in (34) and (35) below.

x-Forcing Functions:

F,(x2) =[(B + C + D)g* — Ek*gh + Ak*h?]

F(y2) = [(D — B — O)¢* + Ek’gh — Ak*h?)

F(x,>)=[(B + C + D)h> + Egh + Ag*

F(y,)) =(D — B~ C)h* — Egh — Ag’]

Fy(y,9) =

Fy(x,X.) = [2(B + C + D)gh + E(g* — k*h?) — 2 Ak*gh]
Fy(y,¥5) = [2(D — B — C)gh — E(g* — k*h*) + 2 Ak*gh]
Fy(x,8) = [2(B + C + D)gd + E(fgh — k2dh)
— 2k2Afh* + (F + G)g]
F,(x,0) = [2(B + C + D) hd + E(fh* + gd)

+ 2Afgh+ (F + G) K]
F,(6*) =[(B + C + D)d* + Edfh + (F + G)d + H].

(34)
y-Forcing Functions:

Fy(x,¥,) = [2(B — C)g* — 2k*Egh + 2 Ak*1?]
Fy(x,y,) = [2(B — C)h? + 2Egh + 2 Ag?]
Fy(x,y;) = [2(B — C)gh + E(g* — k*h?) — 2 Ak>gh]
Fy(x,¥,) = [2(B — C)gh + E(g* — k*h*) — 2 Ak>gh]
F,(y,9) = [2(B — C — D)gd + E(fgh — k*dh)

— 2AKY B2+ (F — G)g]

F,(y,0) = [2(B — C — D)hd + E(fh* + gd)
+ 2Afgh + (F — G)h). (35)
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The notation can be greatly simplified by writing the
expressions for the electric and magnetic fields in the
magnetic midplane (the dispersion plane, y = 0) as fol-
lows,

B,(x,0,z) = By + 2B,x 4+ 3B3x* + -+~
2
[1-!—2b2 -l—3b3 :|
E (x,0,z) = E; + 2E,x + 3E;x* + -+~

2
:E1[1+2e2R+3e3;2 } (36)

0

Note that the constants b; and ¢; are dimensionless. The
forcing function coefficients in equation (31) can now be
more simply represented in terms of the cyclotron radius
and the expansion coefficients for the fields b,, b,, e, and
e;. Necessary combinations of these coefficients for deter-
mining the second order transfer matrix elements are

1
C,=A=-
! 2R

o

1 5
C2=B+C+D=——F[3(e3—b3)+(5e2—2b2)+§]

1
[3(bs — e3) — )]

C;=D—-B-C=— R;:’
1
C4=F+G:_P[(b2_232)’“‘:|
1
C5—F—G——R—Z[2e2—b2]
5
Co=H=—
8R,
1
C;=B-C= 1_{3[3(173—63)‘*'([’2_232)]
1], 5
Cg=B—-C-— =-—R—2 3(b3—e3)+2(b2—2e2)—2.

(37

The matrix elements given in equations (25) and (26)
can be defined in terms of these new coefficients and some
characteristic integrals given in Appendix 1. Explicit ex-
pressions for the matrix elements are given below (f' = 1/
2R, and k = 1/)/2R,).

x-Aberration Matrix Elements:

(xx7) = Colyy + K*C 1,
(x| y3) = C3lyy — k*C 1,
(x|x,%) = Coly + C i1y
(x| y,%) = C3lpy = Cilyy

(x| x,x5) = 2C, 115 — 2k2C1I12

(X1 yo¥s) = 2C411, + 2K*Cy
(x]x,0) = 2C,1;5 — 2K C I, + Cu14
(x| x50) = 2C,I53 + 2fCi1 5 + Cyl,

(x]0%) = Cylys + Coly + Cel,. (38)

y-Aberration Matrix Elements:
(1x,9,) =2C, Iy + 2k*C1,,
(YIxeye) =2C 05, + 2C1
(yIx,y5) =2C,I1,, — 2k2C1112

(Y1xp9,) =2C,1,, — 21‘201112
(] 9,0) = 2Cgl 5 — 2k2fC1122 + Csl,
(V1 ¥,0) =2Csl,5+ 2fC11, + Csl,. (39)

x'-Aberration Matrix Elements:
(x'|x2) = Czll 11+ k*C 15,
x| y2) = — k*CyIy,
(x| x,2) = C2122+CI11
1y, ) Cyly, — Cilyy
(x| x,x,) = 2C, 11, — 2k*C 1,
('] 9o ¥y) = 2C3I7, + 2K2C 1},
(X' x,0) = 2C, 13 — 2k*fC I, + C I}
(x'|x,0) =2C,I53 + 2fC 11, + Cul,
(x'|6%) = C,I43 + Culs + Cely. (40)

y'-Aberration Matrix Elements:
(V' 1%95) = 2C5I4; + 2k*C I,
(V1x0¥0) = 2Cql5, + 2C1 15,
(V' |%,95) = 2C,I1, — 2k*C I,

(V1x6¥0) = 2Cq11, —

)=
('] y,0) = 2Cgl 5 —
0)=2Cgl5 +

'y,

2k2C, I,

2fC, I, + Csl,.

2K C Iy, + Csl

(41)

6. Fringing fields

In order to calculate the properties of the fringe fields,
we need to form expressions for the fields including the
z-dependence at the boundaries. Since both electric and
magnetic fields are derived from scalar potentials, we can
rewrite expressions for the fringe fields from equations
(14-17) including the effects of curved (but not tilted)
pole face boundaries [22, 23, 32]. Pole boundaries which
are not tilted are defined such that the normal to. the pole
face is parallel to the central ray trajectory as shown in
fig. 2.

Define R,, and R,, additionally subscripted with (in)
and (out) when they represent the entrance and exit sides
of the Wien filter respectively, as the radii of curvature for
the magnetic and electric pole face boundaries. Positive
radii have the center of curvature situated on the filter
side of the boundary as illustrated in fig. 2. To extract the
fringe field matrix elements, the second order trajectory
equation is written in time dependent form and integrat-
ed directly. The integral equations can be solved by suc-
cessive approximation and the transfer matrix elements
for the fringe fields to second order in the dispersion
direction and to first order in the direction perpendicular
to the dispersion plane are repeated here [22, 23]. Un-
specified matrix elements are zero.
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Magnetic Pole Piece

Rm(oul)

\

L

Top View

Electric Pole Piece

Side View

Fig. 2. The curved pole face boundaries for the magnetic (top)
and electric (bottom) pole faces. Positive radii of curvature have
the center of curvature within the filter as shown.

Entrance-Face Fringe Field

1
(x]x,)=1—"*
X

o

1
2y — —
(x]x3) IR,
1
2y —
(X I yo) - 2R0
lx,)=—1,
ol xp) =1
1 1 1
WESEN I
2Ro Rm(in) Re(in)
1 1 1
’ 2y _ T
(x l yO) 2Ru I:Rm(in) * Re(in):l
(rly) =1
(V'1y) =1 (42)

Exit-Face Fringe Field

I
(x|x)=1+-"
X

(4

2y —
T

1

2 —
(xlyo)— 2R0

I x) =1,
([ xp) =1
1 1 1

x| x3) = +

2Ra Rm(in) Re(in)

1 1 1
’ 2y P

(x | yO) 2Ro I:Rm(in) * Re(in)il
(r1y,) =1
V1) =1 (43)

The integrals I, and I, are characteristic of the details
of the fringing fields. The fringing field integrals are given
in terms of h,,(z) and h,(z) where B(0,0,z) = B, h,,(z) and
E(0,0,z) = E, h,(z). The functions h,,(z) and h,(z) contain
all of the z dependence of the midplane fields. These
functions are shown schematically in fig. 3. The function-
al form of h,,(z) and h,(z) will depend on the details of the
electrode/pole piece construction at the filter boundaries.
Additionally shown in fig. 3 is the definition of the effec-
tive length of the Wien filter. It is determined such that a
SCOFF field of length L has the same integrated area
((Edz or [ Bdz) as the real field. The effective pole
boundaries need not coincide with the mechanical pole
boundaries. The integrals I, and I, are given below

1 zb z

Ii=x [ dz | dzlh,(2) — h,(2)], (44)
1 zb

L=2: [ dz h(2) [h(2) ~ h(2)]. (45)

The effective edges of both the electric and magnetic fields

.are assumed to be aligned for the above cases. The limits

on the integrals are selected such that the entire fringe
field region lies in the interval za < z < zb for both the
entrance and exit fringe fields. In other words, for the
entrance pole face boundary, za lies in the field free region
and zb lies in the uniform field region. Note that if one
wishes to eliminate the zeroeth order trajectory displace-
ment effect of the fringing fields that the functions h,(z)
and h,,(z) must be equal. This corresponds to a situation
where the electric and magnetic fringe fields extend with
the same functional form [5]. The Wien filter thus has the
advantage that the fringe field components can balance
each other in the zeroeth order, a situation which does
not exist for purely magnetic or electrostatic sectors.

To transport an electron through the Wien filter, the
transfer matrices of both entrance and exit fringing
fields, entrance and exit drift spaces and Wien filter trans-
fer matrices must be multiplied in the appropriate fashion
as [T] = [Drift(out)] [Fringe(out)] [Wien] [Fringe(in)]
[Drift(in)] [22, 23, 31, 32, 33, 34].

7. Polarization vector rotation

Experiments involving the detection and measurement of
electron-spin require an electron-spin polarimeter. These
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Effective Edge Effective Edge
l Mechanical Edge xory Mechanical Edge
R |
}
\l.z~he or hm
Equal Areas
|
! 2
: .

Fig. 3. The fringe fields for the Wien filter as specified by the
central ray normalized fields h,(z) and 4,,(z). Also shown are the
mechanical pole face boundaries and the effective pole face
boundaries. The effective length of the filter in the SCOFF ap-
proximation is given by the length L.

electron-spin detectors usually consist of a high Z scatter-
ing target such as gold and two or more electron coun-
ters. The spin separation occurs as a result of the spin-or-
bit scattering asymmetry. Electrons will be preferentially
scattered towards either the left or right side of the detec-
tor depending upon the spin orientation of the electron.
By having two (or more) [35, 36, 37] particle counters
placed symmetrically about the target normal (electron
axis), the electron-spin polarization may be measured.
These detectors are only sensitive to components of the
polarization vector which lie in the plane of the scattering
target. If a component of the polarization lies out of the
plane of the detector, the spin must be rotated into the
detector plane such that a spin-polarization measure-
ment can be performed.

The electron-spin polarization vector may be rotated
in two principal directions. For rotations about the longi-
tudinal component, where the longitudinal component is
that component of the polarization vector directed along
the electron’s trajectory, an axially symmetric magnetic
field aligned along the electron motion may be used. In
the axially symmetric magnetic field the transverse com-
ponents precess about the magnetic field, while the longi-
tudinal component remains fixed. For rotations about
one of the transverse components, we require a magnetic
field in the transverse direction, or we must deflect the
particle and not rotate its spin. There are several electron-
optical devices which perform this function.

For low energies, an electrostatic deflector of 90° bend-
ing angle will deflect the electron trajectories by 90° while
leaving the orientation of the spin fixed. In this case we
are altering the longitudinal direction relative to the spin
such that the electron as it exists the deflector has the
desired component (initially longitudinal to the trajecto-
ry) of the polarization transverse to the trajectory. In a
uniform or inhomogeneous field Wien filter, a transverse
magnetic field is used to precess the spin, while an electric
field maintains the orientation of the particle trajectory.
Here, the spin direction precesses relative to the trajecto-
ry direction in order for the initially longitudinal compo-
nent of the spin to become transverse.

In the conventional development of electron-spin rota-
tion in electron optical devices, only the lowest order
effects are considered [11, 13]. In the usual treatment,
off-axis components of the fields and the differences in
path lengths due to different trajectories are not consid-
ered. We will begin by using the conventional methodol-
ogy to estimate the spin precession in an inhomogeneous
field Wien filter and later we will expand the approach to
include higher order corrections.

The precession of longitudinal to transverse spin in the
uniform field Wien filter for the central ray trajectory is
characterized by the angle ¢ of rotation (the longitudinal
direction corresponds to the z direction). This rotation
angle is given by [11, 13]

1B, nB,L
@ g > dz . (46)
where L is the effective length of the SCOFF field of the
Wien filter. B, is the value of the magnetic field along
the primary ray in the uniform field Wien filter. Let
an arbitrary polarization vector P be expressed as
P =P, %+ F,9+ P,z and let the axis of the magnetic
field of the Wien filter be positioned such that it lies at
some angle 3 to the  axis where positive 3 is measured
as shown in fig. 4. The magnetic axis orientation of the
Wien filter in the frame of the original polarization axes
is b=B/B=—%sin9 + $cos9. This defines a new
coordinate system (é,, é,, &;) such that the magnetic field
lies along é,. The new coordinate system will be useful in
determining the spin rotation for Wien filters whose fields
are not perfectly aligned with the initial polarization axes.
The new coordinate system in the original polarization
vector frame as pictured in fig. 4 is given by

é,=2Rcosd + Psind é,=b=—2sin9 + Pcosd
é,=2. 4N

<>

N
x

Polarization Axes

<>

x>

A
z Detector Axes

Fig. 4. The axes orientation for initial polarization, the tilted
uniform field Wien filter and the electron-spin polarization de-
tector used to estimate the upper limit on the error of spin
rotation due to the inhomogeneous fields in the double focusing
Wien filter.
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In the coordinate system of the Wien filter, the polariza-
tion vector is

P= (B, cos9 + B,siné,
+(B,co83 — P, sin%)é, + B, ¢, (48)
and the precession of P about the é, (uniform magnetic
field) axis by some angle ¢ is governed by the following
trarisformation
cosp 0 ging
P(¢) = 0 1 0
—sing 0 cosg
= &, [(P,,cos 3 + B, sin ) cos ¢ + B, sin ¢]
+ &,[B,cos3 — B, sin 9]
+&;[~ (P, cos9 + B, sin ) sing + B, cos ¢].
(49)
The detector [35, 36, 37] which separates spins via the
spin-orbit interaction measures the transverse compo-
nents of the polarization. Assuming that the detector axes
are aligned with the initial £ and § polarization axes, as

in fig. 4, the measured components of the polarization
vector are

- P(0)

P % =P, (cos? 9 cos @ + sin 9)
+ P,, sin8 cos3(cos ¢ — 1) + B, cos 3 sin g
P-9=PF,sind cosI(cosp — 1)
+ B,,(sin*9 cos @ + cos?9) + B, sin I sin .
(50)

Beerlage and Farago [13] use this approach of tilted
Wien filter fields to perform polarization measurements
on all spin components when only one particular polar-
ization direction can be detected in the analyzer. We can
use this simple transformation to estimate the degree of
mixing of the polarizations due to the tilt of the fields in
the stigmatic focusing Wien filter. In this particular case,
we can model the magnetic field as follows:

- A
B—Bo[<1 2R0>j> 2R0>e]. (51)

The tilt angle 9 is given in the worst case by the following
expression

xmax/ZRa
1- ymax/zRa .

Reasonable electric and magnetic fields are required for
spin rotation of a 1keV electron beam. Assuming the
maximum displacements x,,,, and y,,,, of the beam tra-
jectory of 2 mm, we can estimate the upper limit on the

tan § = (52)

Table 1. Estimate of polarization mixing due to tilted ficlds in
the Wien filter.

R, (mm) ) E

50 1.16° 0.02
20 3.01° 0.05
10 6.33° 0.11

error induced in P after the spin rotation for pure longi-
tudinal to transverse rotations of #/2 (B, - B,) by looking
at the residual polarization in J as a result of the £-com-
ponent of the magnetic field. As a function of the cyclo-
tron radius these estimates are given in the table 1 below.

7.1. Equation of motion for electron spins in an
inhomogeneous field Wien filter

The estimation of the spin precession given above is for
purely homogeneous fields. In that case the spin precesses
about the magnetic field vector at a fixed rate. In the
integral expression for the rotation angle ¢, no account
was taken of field inhomogeneities, or the difference be-
tween particular electron trajectory lengths through the
filter. In order to correctly incorporate these consider-
ations, we will derive a spin-rotation matrix which will
relate the initial electron position, slope and polarization
to that which will be found at the output of the filter. We
will derive the coupled equations of motion for the spins
in the Wien filter, and parameterize the spin-trajectories
and thereby the fields in terms of the matrix elements for
the spatial variables which were derived in the previous
section.

The coupled differential equations governing spin pre-
cession about a magnetic field cannot be completely de-
coupled. In the limit that the rotations are infinitesimal,
the rotations can be treated as vectors and thus be decou-
pled, but if any of the rotations are finite, the rotation
operators do not commute and they cannot be separated
and treated as vectors [38]. For the same reason, we
cannot transform into a rotating coordinate system to
simplify the problem [39]. Since the finite rotation regime
is the regime in which the Wien filter operates, we cannot
separate the individual rotations into components to sim-
plify this problem. We begin the analysis with the time
dependent differential equation for spin precession.

The non-relativistic time evolution of the electric spin-
polarization vector is governed by the following coupled
differential equations [11]

P

egB  gnB
dt h

—w,x P o,=-——< 217 53
0, x P 0,=7"< 9] (53

g is the electron gyromagnetic ratio. The value of
g = 2.00116 [35]. This means that for each cyclotron or-
bit, that the phase of the spin and the orbit is shifted by
0.1 percent. We will assume here that g = 2 since our
Wien filter will not rotate the spins by more than a couple
of orbits thereby introducing an error of less than 0.2
percent. The time dependent spin equation must be
parameterized in terms of the coordinate z, and all field
quantities must be expanded into series. We will be able
to derive a formalism similar to that developed for the
spatial trajectories in this way. We find the spin equation
equivalent of the spatial trajectory equation given by
equation (18)

dP /1

— = 1+x2+y2BxP. 54
T 2 +x*+y?Bx (54)
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We make the simplifying assumption, applicable here,
that the magnetic field in the z direction will be zero
(SCOFF approximation). This is not unreasonable in the
sense that the z-directed field exists only in the fringe field
regions and thus we expect the perturbation due to these
fields to be small. We can justify this easily in the limit
that the Wien filter length-to-gap ratio is large.- However,
considering the z component of the fringe field to be of
the same order as the transverse field inhomogeneities
within the Wien filter’s main fields, it is immediately evi-
dent that the fringe field components are negligible. Since
the integral of B is taken over path lengths which are
much shorter for passage through the fringing field region
than passage through the main fields, we will neglect the
fringe field inhomogneities for electron-spin precession.
The z-dependent spin-precession equations (54) can be
combined to form two second order and one first order
equation which will be the starting point for our analysis

— |/ 1+x12+y/2Bj|

~(1 + x'?+ y'*)[R,B,B,— BB, (55)

2¢> y
dP N
S = —V 1+x2+ y?B.B, (56)
dz

22 ydz \/> 1+x’2+y’zBi|
d I/n

_ - L 1 ’2 12B
de|: 24 +x°+y y]

—ﬁ-(1+x’2+y’2) [BBZ + BB (57)

Evaluating the derivatives to second order and making
the appropriate substitutions for the potential and the
fields, we find the second order spin-precession equations

&P, B PR
dz? ' R? R?

[2(2b2+1)R——6+x’2+ y
2

+ 2[3bs + 2by(by +2) + €, + 2]16—2

2 x(3
—2(3by + ez)% — 4+ 1) ]
xy yo
R [21;2 =+ 2[3b5 + 2b, (b, + 1) 75 — 2b, E]
P, ) xx'
+ R—g[@bz +1)x"+203b3;+3b,+ 1) R
W ,
—2(3by +by) 5 — by + 1)x5], (58)
i, P y Xy _, ¥o
d_zyz_R_o[zbZEﬂ+2(3b3+b2) R b, 0] (59)

3 AN A il
iz TRET T Re| G2t DX +2(3b3+3b2+1)R
—2(3by+ b )yy (b, + 1)X’5]

D

P /+ !
n Eyz—[zb2 Y +203b, + bg% —b, y’5:|

0

P
—R—[ (2b2+1)——6

4 o
2

2[3by + 2by(by + 2) + €, + 2]

yZ
2b% + €2) F

0

X/Z
R]+ +y?

(4

—2(3b; — + 82 —4(by + 1)%6]. (60)

In order to solve these equations, we make the same
assumptions that were successfully implemented in the
spatial trajectory calculations, namely expand the elec-
tron-spin polarization components into Taylor series ex-
pansions

B, =Y (P.| P, P} B x! x\my" y 2 59) P PL PX Xt x/mym y P 5

X0 yo~zo X0~ yo~zo
B.=(B|R,) P, + (P|B,)E, + (B| B,x,) Pox,
+ (B Box,) B yx, + (B| Bepxy) By X,
+ (B B,x,) B,x, + (| P,0) B,,0 + (B| B,0) B,
+ (Bl B oY) Boyo + (Bl Boyo) Bo ¥ (61)
B, =3X(B| Bl B}, B x,x," ya y,P 6 Bl, BJ, B X x,m vt y,? 64
B =(BIB0y) BeoVo + (BIB,Y) By ¥y + (B By ¥y) By ¥,
+ (BIEB,Yo) By Yoo (62)
B =3X(B| P, BB, x,x,"ys y,p 6% Pl B Bl Xt X,y y,P 64,
E=(B|R,)E,+ (BIB,)E, + (B|P,yx,) Pyx, )
+ (B B,%,) Box, + (B| Pox;) Prox,
+ (B Box;) Box, + (B P, 5)R05+(ZI505)205
+ (B Bo¥o) Boyo + (B Bo¥o) Bo Y (64)

First consider solving these equations for the first order
solutions whereby the spatial variation of the fields and
the spatial trajectory variations of the path lengths are
ignored. This corresponds to solving the standard polar-
ization rotation equations for rotation about a uniform
magnetic field directed in the y direction. These first order
solutions are

zZ z
P =P _cos|— P, sin{ —
X X0 <R0> + zo Sln <R0>7

B =1, |
P =P, cos <i> — P, sin <i> (65)
R, R,

The derivatives are

z P
>= — (66
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We can rewrite the solutions to the first order spin trajec-
tory equations in a form compatible with the formalism
developed for the spatial trajectories. Consider solutions
of the form:

F=G@~R,+H()F, FB=F,
E=G@ER,+H@)E,, (67)
where the first order solutions to the P, and P, equations
are
G() =cos =), H() =R,sin|= (68)
(z) = cos R_a , (z) = R, sin R)

We can develop expansions for the aberrations (second-
order matrix elements) in terms of the forcing functions
as described by equation (27) except now the Green’s
function for x and z spin-precession is

G,(z.7) = H(z) G(1) — G(z) H(z) = R, sin [(Z; T)] (69)

0

and the Green’s function for the y spin-precession
G,,(z,7) = 1. We use the notation above for P/, and P,
realizing that when the expressions are evaluated that
F,=PF,/R,and P,= — P, /R,. It is convenient to use
this notation because the formalism is well developed for
solutions of this form [31]. To solve for the higher order
terms in the spin-precession equations, substitute the ex-
pressions for the spatial variables in terms of the expan-
sions (25) and (26), substitute for the expansions for the
polarizations (61—-64), gather terms and form the spin-
precession forcing functions. These forcing function ex-
pressions are given below.
B-Forcing Functions

FapelB) =~ P25V 120G — sen,

FaplBo) =~ 225 D pgm 1 ieR2nG),

FopslBo) = ~ 22D 16 1 g,

Fop®) =~ 225D i — R3ga,

Fyyu(P.yd) = — (—2—1’1%;”[26 — 24G + K*hH] + R%,
F,,(P.,0) = — (21’;2‘;;”[2}1 —2gH — K2R2hG] + R%,
Fype(Boy) = %g

Fyp(By) = 21% h (70

B-Forcing Functions

2b
F2py(13cayo) = R32 gH;
25,

F2py(1)zoya) = - FgG’

2b
FZpy(lgcoy;) = R32 hH’

2b
F2py(onylo) = - R22 hG. (71)

0
P-Forcing Functions

By p(Beox,) = — Fp (B, X,),
F,,.(B,x,) = B px(BoX,),
By o (BoXg) = — Fy (B, ),
By (Boxo) = Fy pu(BroXy),
By pa(B00) = — Fy (R, 0),
Fyp2(B00) = F (B, 0),

2b,k?
F2pz(f;oya) = - }222 ha
2b
Fypo(BoYe) =3 9 (72)

The higher order expressions (second order in position
and slope) have been derived but the expressions are too
lengthy to be included here. The final expressions for the
matrix elements for the spin precession can now be ex-
pressed in terms of the integrals given in Appendix 2. The
explicit expressions for the matrix elements are given
below.

P-Matrix Elements

(BB, = G(2),

(BB =0
®IR) =7,

@1R,x) = - 25 DLy, - R

(B2 = = P 2l 4 R,

R1R,x) = = 22D 21, L)

(B2, = = D, - R

(BIB,0) = — %'[21“0 — 2Ly + K

(R12,0) = = 2 R~ 21,1, - R

(BIB3) = T2 Lo

BIB ) = 21 73

(4
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P-Matrix Elements

(B1B.,) =0,
(BIB,) =1,
(BIE,) =0,
b, .
(I:;chayo) = E:&E Isy12,
2b,

(I)yll:)zayo)= _Flsyll’

2b
(Pyl Pxoy;) = E; Isy227
2b
(BIBo) = = 27 Lyau- (74)

E-Expressions

(BIR) =~ HE)

0

(B:I};O) =0,
(BIE,) = G,
(BIBox) = — (BIR,x,),
(BIB%) = (B B,%,),
(BIR,%) = - (BIR,x)
(BI,%) = (BIE,),
(IR, =~ (BIP,9).
(B1£,0) = (BIR.0)

2
(BIBy) =~ 221,
(BIBo) =22 L. 75

Now we can abbreviate the elements of the spin matrix
such that bracketed quantities include terms which are
summed over the initial polarization, for example, the
matrix element [P,| P, ] is formed by summing all terms

(BBl = (Bl B.p) + (Bl BpXo) X,
+ (B BoX0) %, + (B| B,0) 6. (76)

The electron-spin rotation matrix in the frame of the
Wien filter where the precession is primarily about the
y-axis is given below. This matrix can be substituted into
the matrix expression given in equation (49) for a correct
second order approximation to the spin-rotation

(Bl Pl [BlBo [BIE]
P(z)=| [FIR] [BIB] [BIE,] |-PO). (77)
[P Eo] [Pl Bl [P Bl

Now the electron-spin precession has been characterized
such that accurate evaluation of the final spin states can
be ascertained.

8. Design examples

In the previous sections we have developed the complete
second order transfer matrix for general inhomogeneous
field Wien filters including electron-spin precession. The
matrix elements are given in a second order approxima-
tion and dispersion is treated rigorously. We will apply
these results to some simple design examples.

8.1. Energy analyzers

The first example will be the design of an electron energy
loss spectrometer which is to be interfaced with an elec-
tron microscope [27]. Assume that the object position for
the Wien filter (entrance slit) lies at the effective edge at
the filter entrance. Further, we will select a 180° Wien
filter. We consider the Wien filter to act like a magnetic
sector, only the trajectories are straight lines; the equa-
tions for the Wien filter and a magnetic sector are similar
in the first order, and as such we attribute a bending angle
@ to the Wien filter defined as & = kz. In other words, a
Wien filter of length z = ]ﬁnRo. The image plane will lie

at the effective edge at the exit to the filter (exit slit).”

Although this example is not practical for implementa-
tion in that the object and image points lie within the
fringe field regions and the slits would necessarily inter-
fere with the fringe fields, it is a good example for compar-
ison with the theory of Rose [27].

If we ignore the effects of the fringing fields, we find
that the spatial magnification (x|x,) = — 1 the angular
magnification (x'|x))=—1 and the dispersion is
(x16) = 2R,. We would like to eliminate the aperture
aberrations completely, (x|x,2) = (x|y,%) =0 while
maintaining the first order Wien focussing condition
e, — b, + 1/4 = 0. Taking the expressions for the matrix
elements from equation (38), the coefficients from equa-
tion (37) and the integrals from Appendix 1, we find we
can eliminate the aberrations if the multipole field excita-
tion parameters are

ey=—1, by=—3, (e5—by)=2. (78)

These results are identical to the results given by Rose
[27]. Furthermore, if we assume that the electric potential
is generated by a cylindrical condenser, as shown in
fig. 1a, the potential (e, = — 1) has the following form,

R

where R = — R,. The cylindrical electrodes have the
center of curvature r, located at — R,/2 shown schemat-
ically in fig. 1. With this electric potential, we find
e; = 4/3 and b; = 23/24, in complete agreement with the
results of Rose [27] (except here the center of curvature is
in the opposite direction due to the assumptions of the
initial field direction). Magnetic poles and electrostatic
electrodes to actualize this configuration are shown by
Rose [27] in his paper and details regarding the numerical
trimming of the fields is given by Tsuno et al. [3].

We can treat the situation where we do not totally
neglect the effect of the fringing fields, and place the ob-




M. R. Scheinfein, Second order transfer matrices for inhomogeneous field Wien filters 111

ject and image in field free regions. We will assume how-
ever, that it is possible to balance the electric and magnet-
ic fringe fields such that integrals I, and I, of equations
(44) and (45) are zero.

This eliminates the zeroeth order displacement and
first order angular focusing of the fringe fields. Numerical
details of this procedure will be given in a subsequent
paper. Further, we will constrain the entrance and exit
pole face radii to be infinite, i. e. the entrance and exit pole
faces shown in fig. 2 are flat. This requirement should
facilitate alignment. All other design requirements being
the same, the following system of equations must be
solved

gd? L k2hd2d,
or, T EIx

(X | x,oz)total ==
0
2

h
+ (XX d; + 5 =0,

2R,

, gd? , kzhdzd

(Xl yoz)total = EFO ( | 2) o
h2

' )d, — — =0

+ X1y d — 5 R~

1
—by+ =0, (80)

g and h are the ray trajectory solutions and d, and d; are
the object and image side drift distances to the appropri-
ate effective edge of the Wien filter. We will assume that
a bending angle of kz = 57/6 = 150° orz = 5 ]/5n/6Ro is
suitable. We would like the magnification to be unity as
above, such thatd, = d;, = ]/5(2 — ]/5) R,. The equations

can be solved and we find thate, = — 1, b, = — 3/4 and -

ey — by = 0.3879. We can separate the hexapole coeffi-
cients as done above to determine the individual multi-
pole field excitations. Numerical ray tracing should be
done in order to refine the calculation in the fields near
the entrance and exit pole face boundaries [5].

We have shown that using the formalism derived above
that we can easily design a second order aperture aberra-
tion corrected energy loss spectrometer. Other con-
straints may be included in the design procedure. One
possible auxilliary constraint is the elimination of the
image plane tilt aberration (x| x,d) such that the image
(dispersion) plane is normal to the electron trajectories.
The requirement will facilitate the implementation of
parallel recording for the acquisition of spectra.

8.2. Spin-rotators

We could begin this design by selecting an aberration
corrected electron energy analyzer as above, choose the
length to perform the desired spin rotation and then
determine the effect that the fields have on perturbing the
ideal electron-spin rotation. Instead, we will concentrate
on a specific example of an electron-spin rotator disre-
garding the device’s properties as an energy analyzer.
For the design of an electron-spin rotator, the usual
requirement is to precess the spin from a longitudinal
(spin pointing along » = velocity vector) orientation to a

transverse orientation. This is a requirement because
most electron-spin polarimeters are sensitive to trans-
verse components of spin only [35, 36, 37] The easiest
solution to elimiante any precession into B is to align the
Wien filter magnetic field with the y- polarlzatlon axis,
and choose the quadrupole excitation parameters b, = 0
and e, = 1/4. This selection guarantees that all P, terms
in the spin-rotation matrix are zero and that the Wien
filter is double focusing. To continue to correct for the
spin-rotation aberrations, consider the situation where
the object position is at the entrance to the Wien filter.
We would thus like to eliminate terms containing slopes
such as (B,| B, x,) since these will be the dominant terms.
In order to do this, the length of the Wien filter must be
carefully selected such that I,,,+2I,, =0 and
21, — R?I;;; = 0, where the integrals are defined in
Appendix 2. The first order solution to the Wien filter
equation for longitudinal to transverse ((2n + 1) n/2) ro-

tations must have G(z) = 0 and H(z) = + 1. To eliminate
the sums of the integrals cited above, g(z) = 0. This
means that
2 1
Kemke= Q12D (81)

where n is an integer. The first occurance which closely
approximates this condition is Kz = 77n/2, which forces
kz = 495n/2. To first order, the spin precesses by 1 3/4
complete rotations. The periodicity of the Wien filter
orbit almost completes 11/4 complete rotations. The
maximum error in the spin due to aberrations will be
about 0.07x;, which is an error of less than 0.01 for en-
trance angles up to 8.5°. Since kz does not precisely equal
5m/2, the electrons do not emerge exactly parallel from
the filter. However, for this example, the error will be less
than 0.5°.

The design possibilities for simultaneous energy analy-
sis and spin rotation are endless. The possibility exists,
using the formalism developed above to design accurate
energy analyzers and spin rotators.

9. Conclusion

The second order transfer matrices for an inhomoge-
neous field Wien filter have been derived for both the
electron trajectories and the electron-spin precession.
The formalism developed greatly facilitates the design of
precise electron-spin rotators which may be used in ex-
periments with polarized electrons, electron energy loss
spectrometers and mass filters. For experiments where
both spin-rotation and energy analysis is required, this
device permits both functions to be performed simulta-
neously. Furthermore, since the inhomogeneous field
Wien filter is stigmatic, it may be incorporated into a
beam transport system possessing cylindrical symmetry
without disturbing the symmetry of the beam line optics
(neglecting dispersion). If the electric and magnetic fringe
field effective edges can be aligned, and if the functional
form for the fall off of the fringe fields can be made
identical for both fringe fields, then the zeroeth order
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beam displacement and first order beam tilt due to the
fringe fields can be eliminated. Finally, examples were
given for specific designs whereby aberrations could be
eliminated.

Appendix 1: Trajectory forcing function integrals

The general expressions for the forcing function integrals
are given below where the following abbreviations are
used [31]

nBt E} f= k

4¢, 8¢ 2R2 2R, 1/5’

9(z) = cos(kz), h(z) = %sin(kz), d(z) =

K=

f

ﬁ(l — cos(kz)).
The general form for the integrals which are required for
the determination of the aberration coefficients is given in
equation (27). Substituting the expressions for g(z) and
h(z) in the SCOFF approximation into equation (27) we
find

sin kz)

w, = ff(f ) cos(kt)dt — cos(kz)

jf ) sin(kt)dr

which reduces to

W, = if(r) G(z,1)dt where G(z,7) = %sin lk(z — 1)).
0

Explicit expressions for the integrals are given below

Iozf G(z,7)dr =}d(z),

L={90) 6z r)ds =2 he),
I =] ) 69 dt = i [he) — zg ),
0
L=]d@ 6= [d(z) —th(z):l,
0 k 2
I =70 6Ead = [h%z) T j,d(z)],
I, =§g(r> h() Gz, ) dv gh(z) d(2),
L =] 900 d) G0 = L1t~ 1)
- L5 - S vaen,
Ly = | ) 6,0 dt = = I — I,,]
0 k
= - 246~ 1G]
Izs—jh (ZT)d‘C—ki[z"Im]
s

= g h@) +2h(2) 9(2) — 329(2)],

z 2
Iy =[d*(t) G(z,7)dv =%[IO =21, + 1]
0

=Jl:-j[%d(z) R zh(z)],
-~ 6 =he),
dii =%[h(z) +29(2)],
=1

h(t) G(z,7)dx —%Zh( ),

= [t 669de = 3L 1 — 2001,

=52 100 6, 9de = L) + 20(6) b,

ho=+ j ) h(x) G(z,7)de ——[th(z)—%d(z):l,

Ii; = P j d(r) G(z,7)
]{l: z) + — h(z —gg(z) h(z)jl
I, = f 9 GG e = - h(2) (),

3f
I = e f (v) d(z) G(z,7)dr

r 2
=é_%h(z)— h? ()+§d(z)]
d z
I, —Egdz(r) G(z,7)dz
21 2
50+ 30 00— zat0)|

Appendix 2: Spin forcing function integrals

We use the same notation as defined in Appendix 1, with
the spin solutions to the differential equations belng de-
fined below

,_mBI _Ef 1
T 2¢, 4¢2 R¥

1
G(z) =cos(Kz), H(z)= X sin(K z).
The general form for the integrals which are required for

the determination of the x and z spin-precession aberra-
tion coefficients is

wF(spin) H(Z j' pm(T T) dT - Z) j spm H(T
Substituting the expressions for G(z) and H(z) we find

wF(spm) - j' spm(T) Gs(Z5 T) d‘C
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where

1.
G(z,7) = X sin[K(z — 1)].

The Green’s function for the y spin-precession terms is 1.

Explicit expressions for the integrals are given below

Lo =] 6(9) G0 de = HE),
0

Lo, = J" H(t) Gz 1) de = =5 [H(Z) — 26 ()],

1
2K
z 1
Lo ={96) Gz 9)dr = =5 [6() — ),

Lz = I h(z) Gy(z, 1) de = [H() - h()],

1
kZ _ KZ
L1y =J(;g(f) G(7) Gy(z,7)de

1
=gz 0@ —¢(@) - 2K* H() h(z)),
z 1
Iy =£ h(7) G(1) Gylz,7)dr = 2 —4K2

H(z)
k*’

-[2 (%) H(2)(1 + g(2)) — h(2) G(z)] +

Ly = 5 9(2) H(x) Gy(z,7)d

Il

e a2 2he) 6@ —HER) (1 + 9],

I,,= ? h(z) H(z) G/(z,7)dz

(1 -9
k2

1

=%[2G(z)

k2__4K2 '—h(Z) H(Z)ila

Isy11.=§g(r) G(2)

= TlK_Z (k% h(z) G(z) — K* H(2) ¢(2)],

k
Iy1= E g() H{7)
1
=2 _gzlC@ gl + k? H(z) h(z) — 1],
Iy =] ho) G
1

ezl 6@~ K2 H(z) h(2)],

L., = j h() H(x)

1
=7 2l6@ k@~ HE) @)
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